Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Native Americans domesticated maize ( Zea mays ssp. mays ) from lowland teosinte parviglumis ( Zea mays ssp. parviglumis) in the warm Mexican southwest and brought it to the highlands of Mexico and South America where it was exposed to lower temperatures that imposed strong selection on flowering time. Phospholipids are important metabolites in plant responses to low-temperature and phosphorus availability and have been suggested to influence flowering time. Here, we combined linkage mapping with genome scans to identify High PhosphatidylCholine 1 ( HPC1 ), a gene that encodes a phospholipase A1 enzyme, as a major driver of phospholipid variation in highland maize. Common garden experiments demonstrated strong genotype-by-environment interactions associated with variation at HPC1, with the highland HPC1 allele leading to higher fitness in highlands, possibly by hastening flowering. The highland maize HPC1 variant resulted in impaired function of the encoded protein due to a polymorphism in a highly conserved sequence. A meta-analysis across HPC1 orthologs indicated a strong association between the identity of the amino acid at this position and optimal growth in prokaryotes. Mutagenesis of HPC1 via genome editing validated its role in regulating phospholipid metabolism. Finally, we showed that the highland HPC1 allele entered cultivated maize by introgression from the wild highland teosinte Zea mays ssp. mexicana and has been maintained in maize breeding lines from the Northern United States, Canada, and Europe. Thus, HPC1 introgressed from teosinte mexicana underlies a large metabolic QTL that modulates phosphatidylcholine levels and has an adaptive effect at least in part via induction of early flowering time.more » « less
-
ABSTRACT MotivationHere, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database. Main Types of Variables IncludedThe database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years. Spatial Location and GrainSampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size. Time Period and GrainThe earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample‐level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric. Major Taxa and Level of MeasurementThe database includes any eukaryotic taxa, with a combined total of 56,400 taxa. Software Formatcsv and. SQL.more » « lessFree, publicly-accessible full text available May 1, 2026
-
For everything there is a season: Analysing periodic mortality patterns with the cyclomort r packageAbstract Many important demographic processes are seasonal, including survival. For many species, mortality risk is significantly higher at certain times of the year than at others, whether because resources are scarce, susceptibility to predators or disease is high, or both. Despite the importance of survival modelling in wildlife sciences, no tools are available to estimate the peak, duration and relative importance of these ‘seasons of mortality’.We presentcyclomort, anrpackage that estimates the timing, duration and intensity of any number of mortality seasons with reliable confidence intervals. The package includes a model selection approach to determine the number of mortality seasons and to test whether seasons of mortality vary across discrete grouping factors.We illustrate the periodic hazard function model and workflow of cyclomort with simulated data. We then estimate mortality seasons of two caribouRangifer taranduspopulations that have strikingly different mortality patterns, including different numbers and timing of mortality peaks, and a marked change in one population over time.Thecyclomortpackage was developed to estimate mortality seasons for wildlife, but the package can model any time‐to‐event processes with a periodic component.more » « less
An official website of the United States government
